Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Vet Microbiol ; 291: 110007, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38335676

ABSTRACT

Mycobacterium bovis is an etiological agent of bovine tuberculosis (bTB) that also infects other mammals, including humans. The lack of an effective vaccine for the control of bTB highlights the need for developing new vaccines. In this study, we developed and evaluated an M. bovis strain deleted in the virulence genes phoP, esxA and esxB as a vaccine candidate against bTB in BALBc mice. The evaluated strains were the new live vaccine and BCG, alone or in combination with ncH65vD. The immunogen ncH65vD is a fusion protein H65, encapsulated together with vitamin D3, within the oily body of a nanocapsule composed of an antigen-loading polymeric shell. All vaccines conferred protection against the M. bovis challenge. However, no significant differences were detected among the vaccinated groups regarding bacterial loads in lungs and spleen. Mice vaccinated with the mutant strain plus ncH65vD showed negative Ziehl Neelsen staining of mycobacteria in their lungs, which suggests better control of bacteria replication according to this protection parameter. Consistently, this vaccination scheme showed the highest proportion of CD4 + T cells expressing the protection markers PD-1 and CXCR3 among the vaccinated groups. Correlation studies showed that PD-1 and CXCR3 expression levels in lung-resident CD4 T cells negatively correlated with the number of colony forming units of M. bovis in the lungs of mice. Therefore, the results suggest a link between the presence of PD-1 + and CXCR3 + cells at the site of the immune response against mycobacteria and the level of mycobacterial loads.


Subject(s)
Cattle Diseases , Mycobacterium bovis , Mycobacterium tuberculosis , Rodent Diseases , Tuberculosis Vaccines , Tuberculosis, Bovine , Humans , Cattle , Animals , Mice , Tuberculosis, Bovine/prevention & control , BCG Vaccine , Programmed Cell Death 1 Receptor , Vaccination/veterinary , Mammals
2.
Future Microbiol ; 18: 1381-1398, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962486

ABSTRACT

Almost 3% of the proteins of Mycobacterium tuberculosis (M. tuberculosis), the main causative agent of human tuberculosis, are lipoproteins. These lipoproteins are characteristic of the mycobacterial cell envelope and participate in many mechanisms involved in the pathogenesis of M. tuberculosis. In this review, the authors provide an updated analysis of M. tuberculosis lipoproteins and categorize them according to their demonstrated or predicted functions, including transport of compounds to and from the cytoplasm, biosynthesis of the mycobacterial cell envelope, defense and resistance mechanisms, enzymatic activities and signaling pathways. In addition, this updated analysis revealed that at least 40% of M. tuberculosis lipoproteins are glycosylated.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Tuberculosis/microbiology , Cell Membrane , Cell Wall/metabolism , Lipoproteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
3.
Pathogens ; 12(9)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37764968

ABSTRACT

Bovine tuberculosis is a chronic infectious disease primarily caused by Mycobacterium bovis, a bacterium that affects cattle and other mammals, including humans. Despite the availability of vast research about the immune response mechanisms of human tuberculosis caused by Mycobacterium tuberculosis, the knowledge of bovine tuberculosis's immunology, particularly regarding the innate immune response, still remains scarce. In this study, we compared the transcriptome of cell cultures containing lymphocytes and M. bovis infected-macrophages with two strains of variable virulence, the virulent Mb04-303 strain and the attenuated Mb534. To that end, we infected bovine macrophages at a multiplicity of infection of one, and co-cultured the infections with autologous lymphocytes. RNA obtained from the co-cultures was sequenced to identify differentially expressed gene pathways by using the database Reactome. The RNA-seq analysis showed that the Mb04-303 infection upregulated the type 1 interferon signalling pathway, while it downregulated the KEAP1-NFE2L2 pathway. According to the literature, this last pathway is involved in the activation of antioxidant genes and inflammasome. In addition, the macrophages infected with Mb04-303 recruited more Galectin 8 than those infected with Mb534. This result indicates that Mb04-303 induced higher phagosome membrane damage, with the possible concomitant release of bacterial compounds into the cytoplasm that activates the type I signalling pathway. Altogether, Mb04-303 repressed the antioxidant and anti-inflammatory responses, likely impairing interleukin-1ß activation, and trigged the canonical type 1 interferon signalling. Although these responses led to the control of bacterial replication during early infection, the virulent strain eventually managed to establish a successful infection.

4.
J Vet Res ; 67(1): 55-60, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37008763

ABSTRACT

Introduction: Mycobacterium bovis and Mycobacterium avium subsp. paratuberculosis, respectively the causative agents of bovine tuberculosis (bTB) and bovine paratuberculosis (PTB), share a high number of antigenic proteins. This characteristics makes the differential diagnosis of the diseases difficult. The interferon gamma (IFN-γ), C-X-C motif chemokine ligand 10 (CXCL10), matrix metallopeptidase 9 (MMP9), interleukin 22 (IL-22) and thrombospondin 1 (THBS1) bovine genes have already been shown to be accurate transcriptional biomarkers of bTB. In order to improve the diagnosis of bTB and PTB, in the present study we evaluated the risk of false positivity of these bTB biomarkers in cattle with PTB. Material and Methods: The transcription of these genes was studied in 13 PTB-infected cattle, using Mycobacterium avium subsp. paratuberculosis (MAP)-stimulated peripheral blood mononuclear cells (PBMC). Results: Overall, the levels of IFN-γ, CXCL10, MMP9 and IL-22 transcripts in MAP-stimulated PBMC failed to differentiate animals with PTB from healthy animals. However, as bTB-afflicted cattle do, the MAP-infected group also displayed a lower level of THBS1 transcription than the non-infected animals. Conclusion: The results of this study add new specificity attributes to the levels of transcription of IFN-γ, CXCL10, MMP9 and IL-22 as biomarkers for bTB.

5.
Tuberculosis (Edinb) ; 134: 102203, 2022 05.
Article in English | MEDLINE | ID: mdl-35367869

ABSTRACT

Cattle vaccination is an attractive approach in compliance with control and eradication programs against Bovine Tuberculosis (bTB). Today, there is no anti bTB vaccine licensed. Two vaccine candidates, MbΔmce2 and MbΔmce2-phoP previously designed were evaluated in BALB/c mice, including the parental M. bovis NCTC10772 and a M. bovis hypervirulent Mb04-303 strains as controls. Sentinel mice (non-inoculated) cohoused with subcutaneous inoculated mice. Persistence, visible tuberculosis lesions (VTL) in lungs and spleens and bacillary load were investigated subcutaneously delivered at 60 and 90 days after inoculation (dpi) as well as their potential transmission to naïve mice. While a 100% survival was observed at 90 dpi without VTL in all groups, transmission was not evidenced in the sentinels mice. Vaccine candidates and control strains were isolated from the spleen of all inoculated mice, while Mb04-303 was isolated from the lungs of one inoculated mouse. Vaccine candidate's attenuation considering survival, lung bacillary load and VTL was confirmed, administrated by the subcutaneous route. Future experiments are necessary to demonstrate whether the persistence of both mutants in the spleen, with low CFU, remains over time to increase the potential increasing risk of dissemination to organs and subsequent transmission to other animals by airborne or other routes.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis, Bovine , Tuberculosis , Animals , BCG Vaccine , Cattle , Disease Models, Animal , Mice , Mice, Inbred BALB C , Tuberculosis/prevention & control , Tuberculosis, Bovine/prevention & control
6.
J Immunol Methods ; 500: 113182, 2022 01.
Article in English | MEDLINE | ID: mdl-34762914

ABSTRACT

Serology tests for SARS-CoV-2 have proven to be important tools to fight against the COVID-19 pandemic. These serological tests can be used in low-income and remote areas for patient contact tracing, epidemiologic studies and vaccine efficacy evaluations. In this study, we used a semi-stable mammalian episomal expression system to produce high quantities of the receptor-binding domain-RBD of SARS-CoV-2 in a simple and very economical way. The recombinant antigen was tested in an in-house IgG ELISA for COVID-19 with a panel of human sera. A performance comparison of this serology test with a commercial test based on the full-length spike protein showed 100% of concordance between tests. Thus, this serological test can be an attractive and inexpensive option in scenarios of limited resources to face the COVID-19 pandemic.


Subject(s)
COVID-19 Serological Testing/methods , COVID-19/diagnosis , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/economics , COVID-19 Serological Testing/economics , Costs and Cost Analysis , Enzyme-Linked Immunosorbent Assay , Genetic Engineering , Humans , Immunoglobulin G/genetics , Immunoglobulin G/metabolism , Protein Binding , Protein Interaction Domains and Motifs/genetics , Spike Glycoprotein, Coronavirus/genetics
7.
J Vet Res ; 65(3): 315-321, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34917844

ABSTRACT

INTRODUCTION: Granulocyte-macrophage colony stimulating factor (GM-CSF) and interleukin-4 (IL-4) are cytokines widely used in ex vivo monocyte differentiation experiments, vaccine formulations and disease treatment. The aim of this study was to produce recombinant bovine GM-CSF and IL-4 in an episomal expression system that conserves the postransductional modification of the native proteins and to use the products to differentiate bovine monocytes into dendritic cells. MATERIAL AND METHODS: The recombinant proteins rGM-CSF and rIL-4 were expressed in PEAKrapid CRL-2828 human kidney cells, ATCC CRL-2828. The functional activity of the recombinant cytokines was monitored by registering morphological changes in bovine monocytes and assessing the expression of CD14 upon incubation with them. RESULTS: Both recombinant proteins were detected in the cell culture supernatant of transfected cells. Culture supernatants of transfected cells induced in bovine monocytes morphological changes that resemble macrophages or dendritic cells. In addition, bovine cells treated with rGM-CSF and rIL-4 showed reduced expression of the macrophage surface marker CD14 compared with untreated cells. This effect indicates the expected differentiation. The expression of the cytokines was stable after many successive cell passages and a freeze/thaw cycle. CONCLUSIONS: The semi-stable mammalian episomal expression system used in this study allowed us to easily produce functional bovine rGM-CSF and rIL-4 without the need for protein purification steps.

8.
Int J Mycobacteriol ; 10(4): 411-413, 2021.
Article in English | MEDLINE | ID: mdl-34916460

ABSTRACT

Background: The fusion protein H65, composed of Mycobacterium tuberculosis (TB) ESX-secreted antigens, has improved the bacillus Calmette-Guerin-induced immune protection in a mouse model of bovine TB when formulated in the liposomal adjuvant CAF01. In this study, we aimed to evaluate the protective efficacy of an attenuated Mycobacterium bovis strain - a mutant in mce2 and phoP genes - combined with H65+CAF01 immunization. We evaluated the protection of MbΔmce2-phoP alone or combined with H65+CAF01 against M. bovis challenge in mice. Methods: Groups of BALBc mice were inoculated with the vaccine candidates or phosphate buffered saline (PBS), and 6 weeks after the last immunization, the animals were aerogenically challenged with virulent M. bovis. Bacterial load in organs was counted after 45 days of the challenge. One-way analysis of variance and Bonferroni's posttest were used for statistical analysis. Results: All vaccinated mice showed reduced bacterial loads in lungs compared to unvaccinated animals. However, the protection level was similar between vaccinated groups. Conclusions: The MbΔmce2-phoP strain combined with three doses of H65+CAF01 induced equivalent protection than the MbΔmce2-phoP strain alone. Thus, the use of combined vaccination strategies requires a careful analysis of the potential interactions of each of their components with the host's immune system.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis Vaccines , Tuberculosis, Bovine , Tuberculosis , Animals , BCG Vaccine , Cattle , Disease Models, Animal , Humans , Lung/microbiology , Mice , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Tuberculosis/prevention & control , Tuberculosis Vaccines/genetics , Tuberculosis, Bovine/prevention & control , Vaccines, Attenuated
9.
Front Immunol ; 12: 674643, 2021.
Article in English | MEDLINE | ID: mdl-34335572

ABSTRACT

Bovine tuberculosis is an important animal and zoonotic disease caused by Mycobacterium bovis. The innate immune response is the first line of defense against pathogens and is also crucial for the development of an efficient adaptive immune response. In this study we used an in vitro co-culture model of antigen presenting cells (APC) and autologous lymphocytes derived from peripheral blood mononuclear cells to identify the cell populations and immune mediators that participate in the development of an efficient innate response capable of controlling the intracellular replication of M. bovis. After M. bovis infection, bovine immune cell cultures displayed upregulated levels of iNOS, IL-22 and IFN-γ and the induction of the innate immune response was dependent on the presence of differentiated APC. Among the analyzed M. bovis isolates, only a live virulent M. bovis isolate induced an efficient innate immune response, which was increased upon stimulation of cell co-cultures with the M. bovis culture supernatant. Moreover, we demonstrated that an allelic variation of the early secreted protein ESAT-6 (ESAT6 T63A) expressed in the virulent strain is involved in this increased innate immune response. These results highlight the relevance of the compounds secreted by live M. bovis as well as the variability among the assessed M. bovis strains to induce an efficient innate immune response.


Subject(s)
Immunity, Innate/immunology , Mycobacterium bovis/immunology , Tuberculosis, Bovine/immunology , Animals , Antigens, Bacterial/immunology , Cattle , Coculture Techniques , Cytokines/metabolism , Interferon-gamma/metabolism , Macrophages , Primary Cell Culture
10.
Res Vet Sci ; 136: 595-597, 2021 May.
Article in English | MEDLINE | ID: mdl-33894619

ABSTRACT

H65, a fusion protein of three pairs of ESX-secreted antigens of Mycobacterium tuberculosis and Mycobacterium bovis, formulated with the liposomal adjuvant CAF01 has been shown to confer protection against M. tuberculosis infection in mice. In this study, we evaluated the impact of combining BCG with H65 + CAF01 immunization in a M. bovis mouse model of infection. We found that a BCG-H65 + CAF01/ H65 + CAF01 prime-boost scheme induced higher protection than BCG and H65 + CAF01 alone. Altogether, H65 antigen formulated in liposomal adjuvant improved the BCG-induced immune protection, thus making this vaccine strategy a promising tool to control bovine tuberculosis.


Subject(s)
BCG Vaccine/immunology , Mycobacterium bovis/immunology , Tuberculosis, Bovine/prevention & control , Adjuvants, Immunologic/pharmacology , Animals , Cattle , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Mycobacterium tuberculosis/immunology , Tuberculosis, Bovine/immunology , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
11.
Comp Immunol Microbiol Infect Dis ; 74: 101593, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33285386

ABSTRACT

PhoP is part of the two-component PhoPR system that regulates the expression of virulence genes of Mycobacteria. The goal of this work was to elucidate the role of PhoP in the mechanism that Mycobacterium bovis, the causative agent of bovine tuberculosis, displays upon stress. An analysis of gene expression and acidic growth curves indicated that M. bovis neutralized the external acidic environment by inducing and secreting ammonia. We found that PhoP is essential for ammonia production/secretion and its role in this process seems to be the induction of asparaginase and urease expression. We also demonstrated that the lack of PhoP negatively affected the synthesis of phthiocerol dimycocerosates. This finding is consistent with the role of the lipid anabolism in maintaining the redox environment upon stress in mycobacteria. Altogether the results of this study indicate that PhoP plays an important role in the response mechanisms to stress of M. bovis.


Subject(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cattle , Gene Expression Regulation, Bacterial , Mycobacterium bovis/genetics , Virulence
12.
Int J Mycobacteriol ; 9(4): 417-421, 2020.
Article in English | MEDLINE | ID: mdl-33323658

ABSTRACT

Background: Bovine tuberculosis (bTB) is a zoonotic disease caused by Mycobacterium bovis that mainly affects cattle. Although vaccination is the most effective strategy to control bTB, it may interfere with the diagnosis of the infection. Therefore, ancillary tests to differentiate vaccinated from infected animals (DIVA) are essential in a cattle vaccination scenario. ESAT-6 and CFP-10 are the most promissory DIVA antigens. Method: In this study, we deleted esat6 and cfp10 genes from the M. bovis Δ mce2 live-attenuated vaccine candidate and evaluated its protection level against bTB in BALBc mice. Results: We found that the M. bovis strain mutant in mce2, esat-6 and cfp-10 failed to confer protection against virulent M. bovis challenge in a mouse model of tuberculosis. Conclusions: This result highlights the relevant role of ESAT-6 and CFP-10 in the induction of protective immune response against M. bovis infection and reveals the need of evaluating different strategies to compensate for the lack of these DIVA antigens in new vaccine formulations.


Subject(s)
Mycobacterium bovis , Tuberculosis, Bovine , Vaccines , Animals , Antigens, Bacterial , Bacterial Proteins , Cattle , Mice , Tuberculosis
13.
Front Microbiol ; 11: 570794, 2020.
Article in English | MEDLINE | ID: mdl-33193164

ABSTRACT

Tuberculosis, a lung disease caused by Mycobacterium tuberculosis (Mtb), is one of the ten leading causes of death worldwide affecting mainly developing countries. Mtb can persist and survive inside infected cells through modulation of host antibacterial attack, i.e., by avoiding the maturation of phagosome containing mycobacteria to more acidic endosomal compartment. In addition, bacterial phosphatases play a central role in the interplay between host cells and Mtb. In this study, we characterized the Rv2577 of Mtb as a potential alkaline phosphatase/phosphodiesterase enzyme. By an in vitro kinetic assay, we demonstrated that purified Rv2577 expressed in Mycobacterium smegmatis displays both enzyme activities, as evidenced by using the artificial substrates p-NPP and bis-(p-NPP). In addition, a three-dimensional model of Rv2577 allowed us to define the catalytic amino acid residues of the active site, which were confirmed by site-directed mutagenesis and enzyme activity analysis, being characteristic of a member of the metallophosphatase superfamily. Finally, a mutation introduced in Rv2577 reduced the replication of Mtb in mouse organs and impaired the arrest of phagosomes containing mycobacteria in early endosomes; which indicates Rv2577 plays a role in Mtb virulence.

14.
Front Microbiol ; 11: 586285, 2020.
Article in English | MEDLINE | ID: mdl-33193236

ABSTRACT

Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, is the world's leading cause of death from an infectious disease. One of the main features of this pathogen is the complex and dynamic lipid composition of the cell envelope, which adapts to the variable host environment and defines the fate of infection by actively interacting with and modulating immune responses. However, while much has been learned about the enzymes of the numerous lipid pathways, little knowledge is available regarding the proteins and metabolic signals regulating lipid metabolism during M. tuberculosis infection. In this work, we constructed and characterized a FasR-deficient mutant in M. tuberculosis and demonstrated that FasR positively regulates fas and acpS expression. Lipidomic analysis of the wild type and mutant strains revealed complete rearrangement of most lipid components of the cell envelope, with phospholipids, mycolic acids, sulfolipids, and phthiocerol dimycocerosates relative abundance severely altered. As a consequence, replication of the mutant strain was impaired in macrophages leading to reduced virulence in a mouse model of infection. Moreover, we show that the fasR mutant resides in acidified cellular compartments, suggesting that the lipid perturbation caused by the mutation prevented M. tuberculosis inhibition of phagolysosome maturation. This study identified FasR as a novel factor involved in regulation of mycobacterial virulence and provides evidence for the essential role that modulation of lipid homeostasis plays in the outcome of M. tuberculosis infection.

15.
Vet Microbiol ; 247: 108758, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32768211

ABSTRACT

Members of the Mycobacterium tuberculosis complex (MTBC) are responsible for tuberculosis in several mammals. In this complex, Mycobacterium tuberculosis and Mycobacterium bovis, which are closely related, show host preference for humans and cattle, respectively. Although human and bovine tuberculosis are clinically similar, M. tuberculosis mostly causes latent infection in humans, whereas M. bovis frequently leads to an acute infection in cattle. This review attempts to connect the pathology in experimental animal models as well as the cellular responses to M. bovis and M. tuberculosis regarding the differences in protein expression and regulatory mechanisms of both pathogens that could explain their apparent divergent latency behaviour. The occurrence of latent bovine tuberculosis (bTB) would represent a serious complication for the eradication of the disease in cattle, with the risk of onward transmission to humans. Thus, understanding the physiological events that may lead to the state of latency in bTB could assist in the development of appropriate prevention and control tools.


Subject(s)
Latent Tuberculosis/microbiology , Macrophages/microbiology , Mycobacterium bovis/physiology , Mycobacterium tuberculosis/physiology , Tuberculosis, Bovine/microbiology , Animals , Cattle , Cattle Diseases/microbiology , Disease Models, Animal , Gene Expression Profiling , Humans , Mice , Mycobacterium bovis/genetics , Mycobacterium tuberculosis/genetics , Proteomics , Tuberculosis/microbiology
16.
Biomed Res Int ; 2020: 4741237, 2020.
Article in English | MEDLINE | ID: mdl-32337252

ABSTRACT

Tuberculosis (TB) is an infectious disease, caused by Mycobacterium tuberculosis, primarily affecting the lungs. The M. tuberculosis strain of the Haarlem family named M was responsible for a large multidrug-resistant TB (MDR-TB) outbreak in Buenos Aires. This outbreak started in the early 1990s and in the mid 2000s still accounted for 29% of all MDR-TB cases in Argentina. By contrast, a clonal variant of strain M, named 410, has caused a single tuberculosis case since the onset of the outbreak. The molecular bases of the high epidemiological fitness of the M strain remain unclear. To assess its unique molecular properties, herein, we performed a comparative protein and lipid analysis of a representative clone of the M strain (Mp) and the nonprosperous M variant 410. We also evaluated their growth in low pH. The variant 410 had higher levels of latency proteins under standard conditions and delayed growth at low pH, suggesting that it is more sensitive to stress stimuli than Mp. Moreover, Mp showed higher levels of mycolic acids covalently attached to the cell wall and lower accumulation of free mycolic acids in the outer layer than the 410 strain. The low expression of latency proteins together with the reduced content of surface mycolic acids may facilitate Mp to evade the host immune responses.


Subject(s)
Drug Resistance, Multiple, Bacterial , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Tuberculosis, Multidrug-Resistant/epidemiology , Argentina/epidemiology , Bacterial Proteins , Cell Wall/metabolism , Disease Outbreaks , Hydrogen-Ion Concentration , Mycolic Acids/metabolism , Proteomics , Tandem Mass Spectrometry , Tuberculosis, Multidrug-Resistant/drug therapy , Tuberculosis, Multidrug-Resistant/microbiology
17.
Vet Microbiol ; 239: 108482, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31759775

ABSTRACT

Mycobacterium bovis (M. bovis) is the causative agent of bovine tuberculosis, a chronic infectious disease that can affect cattle, other domesticated species, wild animals and humans. This disease produces important economic losses worldwide. Two M. bovis strains (04-303 and 534) have been isolated in Argentina. Whereas the 04-303 strain was isolated from a wild boar, the 534 strain was obtained from cattle. In a previous study, six weeks after infection, the 04-303 strain induced 100% mortality in mice. By contrast, mice infected with the 534 strain survived, with limited tissue damage, after four months. In this study we compared all predictive proteins encoded in both M. bovis genomes. The comparative analysis revealed 141 polymorphic proteins between both strains. From these proteins, nine virulence proteins showed polymorphisms in 04-303, whereas five did it in the 534 strain. Remarkably, both strains contained a high level of polymorphism in proteins related to phthiocerol dimycocerosate (PDIM) synthesis or transport. Further experimental evidence indicated that only mutations in the 534 strain have an impact on PDIM synthesis. The observed reduction in PDIM content in the 534 strain, together with its low capacity to induce phagosome arrest, may be associated with the reported deficiency of this strain to replicate and survive inside bovine macrophages. The findings of this study could contribute to a better understanding of pathogenicity and virulence aspects of M. bovis, which is essential for further studies aiming at developing new vaccines and diagnostic techniques for bovines.


Subject(s)
Mycobacterium bovis/genetics , Mycobacterium bovis/pathogenicity , Tuberculosis/microbiology , Virulence/genetics , Animals , Cattle , Mice , Mutation , Mycobacterium bovis/classification , Survival Analysis , Sus scrofa/microbiology , Tuberculosis/mortality , Tuberculosis, Bovine/microbiology
18.
Virulence ; 10(1): 1026-1033, 2019 12.
Article in English | MEDLINE | ID: mdl-31782338

ABSTRACT

In this study, we characterized the role of Rv2617c in the virulence of Mycobacterium tuberculosis. Rv2617c is a protein of unknown function unique to M. tuberculosis complex (MTC) and Mycobacterium leprae. In vitro, this protein interacts with the virulence factor P36 (also named Erp) and KdpF, a protein linked to nitrosative stress. Here, we showed that knockout of the Rv2617c gene in M. tuberculosis CDC1551 reduced the replication of the pathogen in a mouse model of infection and favored the trafficking of mycobacteria to phagolysosomes. We also demonstrated that Rv2617c and P36 are required for resistance to in vitro hydrogen peroxide treatment in M. tuberculosis and Mycobacterium bovis, respectively. These findings indicate Rv2617c and P36 act in concert to prevent bacterial damage upon oxidative stress.


Subject(s)
Bacterial Proteins/genetics , Mycobacterium bovis/genetics , Mycobacterium bovis/pathogenicity , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/pathogenicity , Oxidative Stress , Virulence Factors/genetics , Animals , Lung/microbiology , Macrophages/microbiology , Mice , Mice, Inbred BALB C , Virulence
20.
Front Immunol ; 10: 929, 2019.
Article in English | MEDLINE | ID: mdl-31105712

ABSTRACT

The epidemic clone of Klebsiella pneumoniae (Kpn), sequence type 258 (ST258), carbapenamase producer (KPC), commonly infects hospitalized patients that are left with scarce therapeutic option since carbapenems are last resort antibiotics for life-threatening bacterial infections. To improve prevention and treatment, we should better understand the biology of Kpn KPC ST258 infections. Our hypothesis was that Kpn KPC ST258 evade the first line of defense of innate immunity, the polymorphonuclear neutrophil (PMN), by decreasing its functional response. Therefore, our aim was to evaluate how the ST258 Kpn clone affects PMN responses, focusing on the respiratory burst, compared to another opportunistic pathogen, Escherichia coli (Eco). We found that Kpn KPC ST258 was unable to trigger bactericidal responses as reactive oxygen species (ROS) generation and NETosis, compared to the high induction observed with Eco, but both bacterial strains were similarly phagocytized and cause increases in cell size and CD11b expression. The absence of ROS induction was also observed with other Kpn ST258 strains negative for KPC. These results reflect certain selectivity in terms of the functions that are triggered in PMN by Kpn, which seems to evade specifically those responses critical for bacterial survival. In this sense, bactericidal mechanisms evasion was associated with a higher survival of Kpn KPC ST258 compared to Eco. To investigate the mechanisms and molecules involved in ROS inhibition, we used bacterial extracts (BE) and found that BE were able to inhibit ROS generation triggered by the well-known ROS inducer, fMLP. A sequence of experiments led us to elucidate that the polysaccharide part of LPS was responsible for this inhibition, whereas lipid A mediated the other responses that were not affected by bacteria, such as cell size increase and CD11b up-regulation. In conclusion, we unraveled a mechanism of immune evasion of Kpn KPC ST258, which may contribute to design more effective strategies for the treatment of these multi-resistant bacterial infections.


Subject(s)
Klebsiella Infections/immunology , Klebsiella pneumoniae/immunology , Neutrophils/immunology , Respiratory Burst/immunology , CD11b Antigen/immunology , Escherichia coli/immunology , Humans , Reactive Oxygen Species/immunology , Up-Regulation/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...